1. Let
$$(d_n)$$
 be a sequence of real numbers.
Define
 $S_n := \frac{d_1 + \dots + d_n}{n}$ $\forall n \in \mathbb{N}$.
(a) If $\lim_{x \to 0} \frac{1}{2} + \frac{1}{n} + \frac{1}{n}$ $\forall n \in \mathbb{N}$.
(b) If $\lim_{x \to 0} \frac{1}{2} + \frac{1}{n} + \frac{1}{n} + \frac{1}{n}$
Proof of (a):
Let $S_n = \frac{d_1 + \dots + d_m}{n} + \frac{1}{n} + \frac{1}{n}$
Since (d_n) is convergent, hence it is bounded, i.e.
 $|d_n| \leq M$ $\forall n \in \mathbb{N}$ for some $M > D$.
Let $E > 0$ be given.
Since $\lim_{x \to 0} \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + n \geq m$.
By Archimedean Property, choose $N \in \mathbb{N}$ st.
 $N \geq \max \left\{\frac{m}{d_1}, m\right\}$.

Then, for N>N) we have

$$|Sn| \leq \frac{|Z_{1}| + \dots + |Z_{n}|}{n} + \frac{|Z_{nn}| + \dots + |Z_{n}|}{n}$$

$$\leq \frac{mM}{n} + \frac{(n-m)\frac{g}{2}}{n}$$

$$\leq \frac{g}{2} + \frac{g}{2}$$

$$= g.$$
Hence, limitsn) = 0.
(b) No. Counter-example:
 $Z_{n:=}(-1)^{n}$ is divergent, while
 $S_{n} = \begin{cases} -\frac{1}{n}, n \text{ odd } (nverges to 0.) \\ 0, n even \end{cases}$

2. Let (2n) be the requested defined by

$$2 = 10, \ \exists n = \frac{2x_n}{x_n^2 + 1} \quad \forall n \ge 1.$$
Show that (2n) is convergent & find its limit.
Proof:
(Boundedness): Note that, for n > 1,
(Boundedness): Note that, for n > 1,

$$|-x_{n+1} = 1 - \frac{2x_n}{x_n^2 + 1} = \frac{1 - 2x_n + x_n^2}{x_n^2 + 1} = \frac{|x_{n-1}|^2}{|x_n^2 + 1|} \ge 0$$
By Mathematical induction, we have $\exists n \ge 0$ $\forall n \in M$.
(Monotonicity): Check: $x_2 < \frac{20}{(0)} < \frac{2x(\frac{20}{10})}{(\frac{20}{(10)})^2 + 1} = 3$.
Assume $x_k \le x_{k+1}$ for some k.
Note that $x_{k+2} - x_{k+1} = \frac{2x_{k+1}}{x_{k}^2 + 1} - \frac{2x_k}{x_{k}^2 + 1} \frac{2x_{k+1} - 2x_k}{(x_{k}^2 + 1)(x_{k}^2 + 1)}$

$$= \frac{2(x_{kti}, x_{k})(1 - x_{k}, x_{kti})}{(x_{k}^{2}t_{i})(x_{k}^{2}t_{i})} \ge 0$$

Hence $x_{kt2} \ge x_{kt1}$.

By Mathematical induction, we have

 $x_{hti} \ge x_{h} \forall h \ge 2$

(Hence $(2h)_{h>2}$ is increasing \pounds bounded, by MCT,

 $(2n)$ is convergent. Let $lim(2n) = L$.

Hence

 $L = \frac{2L}{L^{2}+1}$

 $\Longrightarrow L = 0 \text{ or } -1 \text{ or } L$.

(rejected, since $x_{i>0}$)

Therefore, $lim(2n) = L$.

Exercise: Show that if (2m) is unbounded, then there exists a subsequence (λ_{n_k}) s.t. $\lim_{x \to \infty} (\frac{1}{\lambda_{n_k}}) = 0$. (Hint: UKEN, chouse nx st. Xnx > K).